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Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe 5 key goals of distributed systems
» Understand the fundamental constraints of distributed systems

» Understand the roles of replication and partitioning in the context of the
DNS infrastructure



What is a distributed system?
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Model. Model.
Many servers talking through a network Many servers and clients talking through a network




Distributed Systems Goals

Scalabllity
Performance
Latency
Avallability

Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada



http://book.mixu.net/distsys/intro.html

Example: Domain Name System (DNS)

Problem Statement

* Nodes (hosts) on a network are identified by |IP addresses
° £E.9.:142.251.41.4

* We humans prefer something easier to remember: calendar.google.com,
facebook.com, www.khoury.northeastern.edu

* We need to keep a directory of domain names and their addresses

* We also need to make sure everybody gets directed to the correct host



Example: Domain Name System (DNS)

* Need to handle millions of DNS queries per second

* Not immediately obvious how to scale: how do we maintain replication, some
measure of consistency?



http://facebook.com/

Domain Name System

* Strawman solution: Use a Local file
* Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
* Hosts change IPs regularly: Download file frequently
* Lot of constant internet bandwidth use
* |Pv4 space is now full
e 32-bits: 4,294 .967,296 addresses
* At 1 byte per address, file would be 4GB
* Not a lot of disk space (now, DNS introduced in the late 80s)



Domain Name System

* Strawman solution: Use a Local file
* Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
* Hosts change IPs regularly: Download file frequently
* | ot of constant internet bandwidth use

* |Pv4 space is now full We need 200x of these
* 32-bits: 4,294,967,296 addresses to hold 4GB: $270K+
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Domain Name System

* Strawman solution: Use a Local file
* Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
* Hosts change IPs regularly: Download file frequently
* Lot of constant internet bandwidth use
* |Pv4 space is now full
* 32-bits: 4,294,967,296 addresses
* At 1 byte per address, file would be 4GB
* Not a lot of disk space (now, DNS introduced in the late 80s)
* But a lot of constant internet bandwidth
* More names than IPs
* Aliases
* Not scalable!



Domain Name System

* Another Strawman: Well-known

Centralized Server. AII requeStS made tO A-root Query Volume (Millions/Day)
thiS Server: — I 'Pv6 TCP Queries [ 'Pv6 UDP Queries [ 'Pv4 TCP Queries [ 'Pv4 UDP Queries
* Single point of failure
* Bottleneck for throughput and access
time 4:000
 Bottleneck for administration
(adding/changing records?)

0

Apr 2021 May 2021 Jun 2021 Jul 2021 Aug 2021 Sep 2021 Oct 2021 Nov 2021 Dec 2021 Jan 2022 Feb 2022 Mar 2022

* Ultimately, not scalable!

https://a.root-servers.org/metrics
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http://a.root-servers.org/static/index.html

DNS as a distributed system

* WWe need a scalable solution
* New hosts keep being added
* Number of users increases
* Need to maintain speed/responsiveness
* We need our service to be available and fault tolerant
* |tis a crucial basic service
* A problematic node shouldn’t “crash the internet”

* Reads are more important that writes: far more queries to resolve records
than to update them

* Global in scope
* Domain names mean the same thing everywhere

11



Distributed Systems Goals

Scalability
Performance
Latency
Avallability

Fault Tolerance

‘the ability of a system, network, or
process, to handle a growing amount
of work in a capable manner or its
abllity to be enlarged to
accommodate that growth.”

“Distributed Systems for Fun and Profit”, Takada



http://book.mixu.net/distsys/intro.html

Distributed Systems Scale “Horizontally”

» “Vertical” scaling: add more resources to existing server
» Faster CPUs, more CPU cores, more RAM, more storage

 |neffective once: Clock speed plateaus; difficult to write applications that
utilize 256 CPU cores (adding 2TB RAM to a server can often help)

* "Horizontal” scaling: add more servers
* Rely on "commodity” servers rather than state-of-the-art hardware

* Allows for dynamic addition of resources as needed by load



Distributed Systems Goals

“Is characterized by the amount of

* Scalability useful work accomplished by a
computer system compared to the

* Performance time and resources used.”

* Latency

* Availability

* Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada



http://book.mixu.net/distsys/intro.html

Improve Throughput With Concurrency

Throughput: total requests that can be processed per unit-time

Request = cache | Build friends Build Build Send | Response
Check list Newsfeed Suggestions response '

Request Response

Cache Build friends Build Build Send
Check list Newsfeed Suggestions response
Build friends Build Build
list Newsfeed Suggestions




Distributed Systems Goals

“The state of being latent; delay, a

* Scalability period between the initiation of
something and the it becoming

* Performance visible ’

* Latency

* Availability

* Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada



http://book.mixu.net/distsys/intro.html

Latency: Delay in Receilving a Response

* |In client/server model, latency is simply: time between client sending request
and receiving response

* What contributes to latency?

* Adding pipelined components -> latency Is cumulative

. Image Service
Sends images J
Camera 10ns ‘ 1 rriase 2 s
5ns

10ns | Total latency: 30ns
Processes images




Improving Latency with Distributed
Systems

* Often more challenging than increasing throughput
* Examples:
* Physical - Speed of light (network transmissions over long distances)
* Algorithmic - Looking up an item in a hash table is limited by hash function
* Economic - Adding more RAM gets expensive

* Distributed systems can reduce latency by moving the data/server closer to
the user



Networks Introduce Significant Latency

* We still haven't surpassed the speed
of light: ~1 CPU cycle ~= 10cm of
transmission distance
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* Chicago <-> NYC is a valuable link
due to commodities markets in
Chicago and equities markets in NYC

* High frequency trading created a
market for private, lower-latency
alternatives to public internet

* Extremely expensive, not a general
solution (and still 8.5ms!)

https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds



https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

Distributed Systems Goals

“the proportion of time a system is in

* Scalability a functioning condition. If a user
cannot access the system, it is said
* Performance to be unavailable.”
* Latency
Avallability = uptime / (uptime + downtime).
* Availability Often measured in “nines”
Availability % Downtimel/year
* Fault Tolerance 90% ~1 month
99% <4 days
99.9% <9 hours
99.99% <1 hour
99.999% 5 minutes
"Dig 99'99,99% L 31second§ __2ada



http://book.mixu.net/distsys/intro.html

Distributed Systems Challenges: Availability

More machines, more problems

* Say there's a 1% chance of having some hardware failure occur to a machine
In a given month (power supply burns out, hard disk crashes, etc)

* Now | have 10 machines

* Probability(at least one fails during the month) = 1 - Probability(no machine
fails) = 1-(1-.01)"° = 10%

* 100 machines -> 63% chance that at least one fails
* 200 machines -> 87% chance that at least one fails (!)

* |Implication: System as a whole must tolerate component failures



Distributed Systems Goals

“abllity of a system to behave in a

Scalability well-defined manner once faults
Performance oceur

Latency

Avallablility

What kind of faults?
Fault Tolerance

Disks fall Networking fails

Power supplies fall Security breached

Datacenter goes oftline
Power goes out

“Distributed Systems for Fun and Profit”, Takada



http://book.mixu.net/distsys/intro.html

Distributed Systems Challenges: Performance,

Availability

Number of hodes + distance between them
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Challenge: Distributed Systems Rely on
Networks

* Can not expect network to be a perfect analog for communication within a single
computer because:

* Speed of light (1 foot/nanosecond)

* Communication links exist in uncontrolled/hostile environments

* Communication links may be bandwidth limited (tough to reach even 100MB/sec)
* |n contrast to a single computer, where:

* Distances are measured in mm, not feet

* Physical concerns can be addressed all at once

* Bandwidth is plentiful (easily GB/sec)



And still more challenges

We still rely on other administrators, who are not infallible

Amazon Web Services
outage takes aportionof
the internet down with it

Zack Whittaker ]

@zackwhittaker / 12:32 PM EST * November 25, 2020 Comment

[©] Image Credits: David Becker / Getty Images

Amazon Web Services is currently having an outage, taking

a chunk of the internet down with it.

Several AWS services were experiencing problems as of
early Wednesday, according to its status page. That means
any app, site or service that relies on AWS might also be

down, too. (As | found out the hard way this morning when

(D) < O U B @ aws.amazon.com ¢ @)

aWS Contact Sales Support~ English My Account~ Sign In to the Console
= PP g Y g

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More

Summary of the Amazon Kinesis Event in the Northern Virginia (US-EAST-1)
Region
November, 25th 2020

We wanted to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on
November 25th, 2020.

Amazon Kinesis enables real-time processing of streaming data. In addition to its direct use by customers, Kinesis is used by several other AWS services.
These services also saw impact during the event. The trigger, though not root cause, for the event was a relatively small addition of capacity that began
to be added to the service at 2:44 AM PST, finishing at 3:47 AM PST. Kinesis has a large number of "back-end” cell-clusters that process streams. These
are the workhorses in Kinesis, providing distribution, access, and scalability for stream processing. Streams are spread across the back-end through a
sharding mechanism owned by a “front-end” fleet of servers. A back-end cluster owns many shards and provides a consistent scaling unit and fault-
isolation. The front-end's job is small but important. It handles authentication, throttling, and request-routing to the correct stream-shards on the

back-end clusters.

The capacity addition was being made to the front-end fleet. Each server in the front-end fleet maintains a cache of information, including
membership details and shard ownership for the back-end clusters, called a shard-map. This information is obtained through calls to a microservice
vending the membership information, retrieval of configuration information from DynamoDB, and continuous processing of messages from other
Kinesis front-end servers. For the latter communication, each front-end server creates operating system threads for each of the other servers in the
front-end fleet. Upon any addition of capacity, the servers that are already operating members of the fleet will learn of new servers joining and
establish the appropriate threads. It takes up to an hour for any existing front-end fleet member to learn of new participants.

At 5:15 AM PST, the first alarms began firing for errors on putting and getting Kinesis records. Teams engaged and began reviewing logs. While the new
capacity was a suspect, there were a number of errors that were unrelated to the new capacity and would likely persist even if the capacity were to be
removed. Still, as a precaution, we began removing the new capacity while researching the other errors. The diagnosis work was slowed by the variety
of errors observed. We were seeing errors in all aspects of the various calls being made by existing and new members of the front-end fleet,
exacerbating our ability to separate side-effects from the root cause. At 7:51 AM PST, we had narrowed the root cause to a couple of candidates and
determined that any of the most likely sources of the problem would require a full restart of the front-end fleet, which the Kinesis team knew would be
a long and careful process. The resources within a front-end server that are used to populate the shard-map compete with the resources that are used
to process incoming requests. So, bringing front-end servers back online too quickly would create contention between these two needs and result in
very few resources being available to handle incoming requests, leading to increased errors and request latencies. As a result, these slow front-end
servers could be deemed unhealthy and removed from the fleet, which in turn, would set back the recovery process. All of the candidate solutions
involved changing every front-end server’s configuration and restarting it. While the leading candidate (an issue that seemed to be creating memory
pressure) looked promising, if we were wrong, we would double the recovery time as we would need to apply a second fix and restart again. To speed
restart, in parallel with our investigation, we began adding a configuration to the front-end servers to obtain data directly from the authoritative
metadata store rather than from front-end server neighbors during the bootstrap process.

At 9:39 AM PST, we were able to confirm a root cause, and it turned out this wasn't driven by memory pressure. Rather, the new capacity had caused all
of the servers in the fleet to exceed the maximum number of threads allowed by an operating system configuration. As this limit was being exceeded,

h +



System Design Follows Requirements

Domain Name System

* DNS requirements for querying records:
» Scalabllity - grow in number of names
* Performance - grow in number of requests
» Latency - provide answers with little delay
* Fault tolerance & availabllity - always provide a response
 DNS requirements for updating/creating records:
» Latency - OK if it takes minutes/hours for an update to take full effect

* Performance - Expect far fewer writes than reads



Preliminary Design: How to organize data in the
system?

* This depends to a large degree on whether there is shared state
* Usually, there is some shared state
* How important is it to synchronize?
* \WWhat about our DNS example?
°* Domains can be split (e.g., .com, .edu, .info, .eu, .jp, ...)

* Huge volume of requests — multiple nodes need to provide the same
mappings, consistently



How to organize DNS

ldea: break apart responsibility for each part of a domain name (zone) to a
different group of servers

RO A\ rS

bt northe@stern i

khaury

—ach zone Is a continuous section of name space
—ach zone has an associlate set of name servers




How to organize DNS

ldea: break apart responsibility for each part of a domain name (zone) to a
different group of servers

In other words, we partition the domain names
according to the top-level domain.



Recurring Solution #1: Partitioning

* Partitioning is a common strategy to distributing a system and its data

e Starting from a non-distributed system:

All accesses go to single server




Recurring Solution #1: Partitioning

* Divide data up in some (hopefully logical) way

* Makes it easier to process data concurrently (cheaper reads)

—ach server has 50% of data, limits
amount of processing per server.

—ven If 1 server goes down, still have
50% of the data online.




Partitioning DNS

Root Servers

Global
Layer

Administrational
Layer

v
!

Managerial
Layer

VL
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DNS: Example

What might a request look like in practice?
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How to deal with volume?

We successfully distributed requests following the hierarchical nature of
domain names

However, e.g., .com is a very popular TLD — there might be (hundreds of)
thousands of requests happening at any given time

We may need several nodes just servicing .com

This leads to replication



Recurring Solution #2: Replication

* Goal: Any node should be able to process any request

* Again, starting from a non-distributed system:

All accesses go to single server




Recurring Solution #2: Replication

Entire data set Is copied




Recurring Solution #2: Replication

* Improves performance:
* Client load can be evenly shared between servers
* Reduces latency: can place copies of data nearer to clients

* Improves availabllity:

* One replica falls, still can serve all requests from other replicas



* 13 root servers

® [a-m] .root-servers.orqg

* £E.9., d.root-servers.org

* Handled by 12 distinct entities
* ("a” and ") are both Verisign

* Don't ask why.

Replication in DNS — Root Servers

Verisign, Inc.
Information Sciences Institute
Cogent Communications
University of Maryland
NASA Ames Research Center

Internet Systems Consortium, Inc.
U.S. DOD Network Information Center

U.S. Army Research Lab
Netnod
Verisign, Inc.

RIPE NCC
ICANN
WIDE Project



There Is replication even within the root servers

* 13 root servers

* [a-m] .root—-servers.orqg

* Eg., d.root-servers.org

* But each root server has multiple copies of the database, which need to be kept In
sync.

* Somewhere around 1500 replicas in total.



Partitioning + Replication

* S0, DNS combines both partitioning and replication

* As do most distributed systems




Replication Problem: Consistency

We probably want our system to work like this




Sequential Consistency

AKA: Behaves like a single machine would




Availability

If at least one node is online, can we still answer a request?

B~ Set A=5




Consistent + Available

On timeout, assume node is crashed

Set A=5
e
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What if the network fails?




Shared Fate

Are you still there?

* Two methods/threads/processes running on the [E-= - 58 _ .-
same computer generally have shared fate
[Crashed/not]}
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* When two machines in a distributed system can't
talk to each other, how do we know if the other is
crashed?

* We call this a split brain problem




CAP Theorem: Consistency or Availability

* Pick two of three:

* Consistency: All nodes see the same data at the same time (strong
consistency)

* Availablility: Individual node failures do not prevent survivors from continuing
to operate

* Partition tolerance: The system continues to operate despite message loss
(from network and/or node failure)

* Can't drop this for a DS - networks can always fall



DNS uses a relaxed consistency model

* Recall - DNS requirements for updating/creating records:
» Latency - OK if it takes minutes/hours for an update to take full effect
* Performance - Expect far fewer writes than reads

 DNS does not attempt to provide strong consistency

» Updates are made in a best-effort approach

* OK for clients to see the “old” value for a short time after it was updated



Distributed Software Engineering Abstractions

Key Question: Consistency vs Availability

* Distributed system will never match exact semantics of non-distributed system

* For replication do we value more: guaranteed consistency (looks like a single
machine) or guaranteed availability (sometimes read stale data)?

* For alock server?

* For the order of tweets on twitter?

* For partitioning: Where can we draw the line”? How do we determine how to
organize the partitions?

* Next module: common architectures for distributed systems



Review: Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe 5 key goals of distributed systems
» Understand the fundamental constraints of distributed systems

» Understand the roles of replication and partitioning in the context of the
DNS infrastructure
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