
Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences
© 2022, released under CC BY-SA

CS 4530 Software Engineering
Module 9: Distributed Systems Principles and Requirements

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe 5 key goals of distributed systems
• Understand the fundamental constraints of distributed systems
• Understand the roles of replication and partitioning in the context of the

DNS infrastructure

What is a distributed system?

Model:
Many servers talking through a network

Model:
Many servers and clients talking through a network

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Example: Domain Name System (DNS)
Problem Statement

• Nodes (hosts) on a network are identified by IP addresses

• E.g.: 142.251.41.4

• We humans prefer something easier to remember: calendar.google.com,
facebook.com, www.khoury.northeastern.edu

• We need to keep a directory of domain names and their addresses

• We also need to make sure everybody gets directed to the correct host

Example: Domain Name System (DNS)

• Need to handle millions of DNS queries per second

• Not immediately obvious how to scale: how do we maintain replication, some
measure of consistency?

6

DNS Server

facebook.com?

31.13.66.35

http://facebook.com/

• Strawman solution: Use a Local file
• Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
• Hosts change IPs regularly: Download file frequently
• Lot of constant internet bandwidth use
• IPv4 space is now full

• 32-bits: 4,294,967,296 addresses
• At 1 byte per address, file would be 4GB
• Not a lot of disk space (now, DNS introduced in the late 80s)

Domain Name System

7

• Strawman solution: Use a Local file
• Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
• Hosts change IPs regularly: Download file frequently
• Lot of constant internet bandwidth use
• IPv4 space is now full

• 32-bits: 4,294,967,296 addresses
• At 1 byte per address, file would be 4GB
• Not a lot of disk space (now, DNS introduced in the late 80s)

Domain Name System

8

We need 200x of these
to hold 4GB: $270K+

Domain Name System
• Strawman solution: Use a Local file

• Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
• Hosts change IPs regularly: Download file frequently
• Lot of constant internet bandwidth use
• IPv4 space is now full

• 32-bits: 4,294,967,296 addresses
• At 1 byte per address, file would be 4GB
• Not a lot of disk space (now, DNS introduced in the late 80s)
• But a lot of constant internet bandwidth

• More names than IPs
• Aliases

• Not scalable!

9

• Another Strawman: Well-known
centralized server. All requests made to
this server:

• Single point of failure

• Bottleneck for throughput and access
time

• Bottleneck for administration
(adding/changing records?)

• Ultimately, not scalable!

Domain Name System

10

https://a.root-servers.org/metrics

http://a.root-servers.org/static/index.html

• We need a scalable solution
• New hosts keep being added
• Number of users increases
• Need to maintain speed/responsiveness

• We need our service to be available and fault tolerant
• It is a crucial basic service
• A problematic node shouldn’t “crash the internet”
• Reads are more important that writes: far more queries to resolve records

than to update them
• Global in scope

• Domain names mean the same thing everywhere

DNS as a distributed system

11

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“the ability of a system, network, or
process, to handle a growing amount

of work in a capable manner or its
ability to be enlarged to

accommodate that growth.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Distributed Systems Scale “Horizontally”

• “Vertical” scaling: add more resources to existing server

• Faster CPUs, more CPU cores, more RAM, more storage

• Ineffective once: Clock speed plateaus; difficult to write applications that
utilize 256 CPU cores (adding 2TB RAM to a server can often help)

• “Horizontal” scaling: add more servers

• Rely on “commodity” servers rather than state-of-the-art hardware

• Allows for dynamic addition of resources as needed by load

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“is characterized by the amount of
useful work accomplished by a

computer system compared to the
time and resources used.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Improve Throughput With Concurrency

Facebook.com
Request Cache

Check
Send

response
ResponseBuild friends

list
Build

Suggestions
Build

Newsfeed

Facebook.comRequest
Cache
Check

Send
response

Response
Build friends

list
Build

Suggestions
Build

Newsfeed

Build friends
list

Build
Newsfeed

Build
Suggestions

Throughput: total requests that can be processed per unit-time

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“The state of being latent; delay, a
period between the initiation of
something and the it becoming

visible.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

• In client/server model, latency is simply: time between client sending request
and receiving response

• What contributes to latency?

• Adding pipelined components -> latency is cumulative

Latency: Delay in Receiving a Response

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 210ns
5ns

5ns

10ns Total latency: 30ns

• Often more challenging than increasing throughput

• Examples:

• Physical - Speed of light (network transmissions over long distances)

• Algorithmic - Looking up an item in a hash table is limited by hash function

• Economic - Adding more RAM gets expensive

• Distributed systems can reduce latency by moving the data/server closer to
the user

Improving Latency with Distributed
Systems

• We still haven’t surpassed the speed
of light: ~1 CPU cycle ~= 10cm of
transmission distance

• Chicago <-> NYC is a valuable link
due to commodities markets in
Chicago and equities markets in NYC

• High frequency trading created a
market for private, lower-latency
alternatives to public internet

• Extremely expensive, not a general
solution (and still 8.5ms!)

Networks Introduce Significant Latency

https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

“Distributed Systems for Fun and Profit”, Takada

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“the proportion of time a system is in
a functioning condition. If a user

cannot access the system, it is said
to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month

99% < 4 days

99.9% < 9 hours

99.99% <1 hour

99.999% 5 minutes

99.9999% 31 seconds

Often measured in “nines”

http://book.mixu.net/distsys/intro.html

Distributed Systems Challenges: Availability
More machines, more problems

• Say there’s a 1% chance of having some hardware failure occur to a machine
in a given month (power supply burns out, hard disk crashes, etc)

• Now I have 10 machines

• Probability(at least one fails during the month) = 1 - Probability(no machine
fails) = 1-(1-.01)10 = 10%

• 100 machines -> 63% chance that at least one fails

• 200 machines -> 87% chance that at least one fails (!)

• Implication: System as a whole must tolerate component failures

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“ability of a system to behave in a
well-defined manner once faults

occur”

What kind of faults?

Disks fail

Power supplies fail

Power goes out

Networking fails

Security breached

Datacenter goes offline
“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Distributed Systems Challenges: Performance,
Availability
Number of nodes + distance between them

• Can not expect network to be a perfect analog for communication within a single
computer because:

• Speed of light (1 foot/nanosecond)

• Communication links exist in uncontrolled/hostile environments

• Communication links may be bandwidth limited (tough to reach even 100MB/sec)

• In contrast to a single computer, where:

• Distances are measured in mm, not feet

• Physical concerns can be addressed all at once

• Bandwidth is plentiful (easily GB/sec)

Challenge: Distributed Systems Rely on
Networks

And still more challenges
We still rely on other administrators, who are not infallible

System Design Follows Requirements
Domain Name System

• DNS requirements for querying records:

• Scalability - grow in number of names

• Performance - grow in number of requests

• Latency - provide answers with little delay

• Fault tolerance & availability - always provide a response

• DNS requirements for updating/creating records:

• Latency - OK if it takes minutes/hours for an update to take full effect

• Performance - Expect far fewer writes than reads

Preliminary Design: How to organize data in the
system?

• This depends to a large degree on whether there is shared state

• Usually, there is some shared state

• How important is it to synchronize?

• What about our DNS example?

• Domains can be split (e.g., .com, .edu, .info, .eu, .jp, …)

• Huge volume of requests – multiple nodes need to provide the same
mappings, consistently

Idea: break apart responsibility for each part of a domain name (zone) to a
different group of servers

How to organize DNS

Root servers

com org net edu uk jp

northeasternbu mit

khoury
Each zone is a continuous section of name space
Each zone has an associate set of name servers

Idea: break apart responsibility for each part of a domain name (zone) to a
different group of servers

How to organize DNS

Root servers

com org net edu uk jp

northeasternbu mit

khoury
Each zone is a continuous section of name space
Each zone has an associate set of name servers

In other words, we partition the domain names
according to the top-level domain.

Recurring Solution #1: Partitioning

• Partitioning is a common strategy to distributing a system and its data

• Starting from a non-distributed system:

A B

All accesses go to single server

Recurring Solution #1: Partitioning
• Divide data up in some (hopefully logical) way

• Makes it easier to process data concurrently (cheaper reads)

A
[0…1
00]

B
[A…N]

A
[101..
200]

B
[O…Z]

Each server has 50% of data, limits
amount of processing per server.

Even if 1 server goes down, still have
50% of the data online.

Partitioning DNS

org comedu govnet

northeastern

www

www

uk

root-servers

www

Global
Layer

Administrational
Layer

Managerial
Layer

33

Root Servers

khoury

DNS: Example
What might a request look like in practice?

Local DNS Server

Root

.edu

neu.edu

khoury.neu.edu

course.khoury.neu.edu

course.khoury.neu.edu

ns.edu

course.khoury.neu.edu

ns1.neu.edu

course.khoury.neu.edu

ns1.khoury.neu.edu

course.khoury.neu.edu

129.10.117.35

How to deal with volume?

• We successfully distributed requests following the hierarchical nature of
domain names

• However, e.g., .com is a very popular TLD – there might be (hundreds of)
thousands of requests happening at any given time

• We may need several nodes just servicing .com

• This leads to replication

Recurring Solution #2: Replication

• Goal: Any node should be able to process any request

• Again, starting from a non-distributed system:

A B

All accesses go to single server

Recurring Solution #2: Replication

A B

Entire data set is copied

A B

Recurring Solution #2: Replication

• Improves performance:

• Client load can be evenly shared between servers

• Reduces latency: can place copies of data nearer to clients

• Improves availability:

• One replica fails, still can serve all requests from other replicas

• 13 root servers
• [a-m].root-servers.org

• E.g., d.root-servers.org

• Handled by 12 distinct entities
• (“a” and “j”) are both Verisign

• Don’t ask why.

Replication in DNS – Root Servers
Verisign, Inc. a

Information Sciences Institute b

Cogent Communications c

University of Maryland d

NASA Ames Research Center e

Internet Systems Consortium, Inc. f

U.S. DOD Network Information Center g

U.S. Army Research Lab h

Netnod i

Verisign, Inc. j

RIPE NCC k

ICANN l

WIDE Project m

• 13 root servers
• [a-m].root-servers.org

• E.g., d.root-servers.org

• But each root server has multiple copies of the database, which need to be kept in
sync.

• Somewhere around 1500 replicas in total.

There is replication even within the root servers

Partitioning + Replication

• So, DNS combines both partitioning and replication

• As do most distributed systems

AA BB

Replication Problem: Consistency
We probably want our system to work like this

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

5

Sequential Consistency
AKA: Behaves like a single machine would

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!
Set A=5

“OK!”
5

Availability
If at least one node is online, can we still answer a request?

A B A B

Set A=5

6 7 765

Read A

Set A=5

Consistent + Available
On timeout, assume node is crashed

A B A B

Set A=5

6 7 765

“OK”! “5”!
Set A=5

Read A

Assume
replica failed

What if the network fails?

A B A B

Set A=5

6 7 765

“OK”!
Set A=5

Assume
replica failed

Read A “6”!

Shared Fate
Are you still there?

• Two methods/threads/processes running on the
same computer generally have shared fate
[Crashed/not]

• When two machines in a distributed system can’t
talk to each other, how do we know if the other is
crashed?

• We call this a split brain problem

CAP Theorem: Consistency or Availability

• Pick two of three:

• Consistency: All nodes see the same data at the same time (strong
consistency)

• Availability: Individual node failures do not prevent survivors from continuing
to operate

• Partition tolerance: The system continues to operate despite message loss
(from network and/or node failure)

• Can’t drop this for a DS - networks can always fail

DNS uses a relaxed consistency model

• Recall - DNS requirements for updating/creating records:

• Latency - OK if it takes minutes/hours for an update to take full effect

• Performance - Expect far fewer writes than reads

• DNS does not attempt to provide strong consistency

• Updates are made in a best-effort approach

• OK for clients to see the “old” value for a short time after it was updated

Distributed Software Engineering Abstractions
Key Question: Consistency vs Availability

• Distributed system will never match exact semantics of non-distributed system

• For replication do we value more: guaranteed consistency (looks like a single
machine) or guaranteed availability (sometimes read stale data)?

• For a lock server?

• For the order of tweets on twitter?

• For partitioning: Where can we draw the line? How do we determine how to
organize the partitions?

• Next module: common architectures for distributed systems

Review: Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe 5 key goals of distributed systems
• Understand the fundamental constraints of distributed systems
• Understand the roles of replication and partitioning in the context of the

DNS infrastructure

	CS 4530 Software Engineering
	Learning Objectives for this Lesson
	What is a distributed system?
	Distributed Systems Goals
	Example: Domain Name System (DNS)
	Example: Domain Name System (DNS)
	Domain Name System
	Domain Name System
	Domain Name System
	Domain Name System
	DNS as a distributed system
	Distributed Systems Goals
	Distributed Systems Scale “Horizontally”
	Distributed Systems Goals
	Improve Throughput With Concurrency
	Distributed Systems Goals
	Latency: Delay in Receiving a Response
	Improving Latency with Distributed Systems
	Networks Introduce Significant Latency
	Distributed Systems Goals
	Distributed Systems Challenges: Availability
	Distributed Systems Goals
	Distributed Systems Challenges: Performance, Availability
	Challenge: Distributed Systems Rely on Networks
	And still more challenges
	System Design Follows Requirements
	Preliminary Design: How to organize data in the system?
	How to organize DNS
	How to organize DNS
	Recurring Solution #1: Partitioning
	Recurring Solution #1: Partitioning
	Partitioning DNS
	DNS: Example
	How to deal with volume?
	Recurring Solution #2: Replication
	Recurring Solution #2: Replication
	Recurring Solution #2: Replication
	Replication in DNS – Root Servers
	There is replication even within the root servers
	Partitioning + Replication
	Replication Problem: Consistency
	Sequential Consistency
	Availability
	Consistent + Available
	What if the network fails?
	Shared Fate
	CAP Theorem: Consistency or Availability
	DNS uses a relaxed consistency model
	Distributed Software Engineering Abstractions
	Review: Learning Objectives for this Lesson

